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Abstract -
In the construction industry, contractors require precise

knowledge of design restrictions originating from regulatory
documents and contract specifications. For the automatic
compliance checking of the building design regarding these
rules, they have to be converted from the representation in
natural language to a machine-readable format. This task, if
carried out by human experts, is quite laborious and error-
prone, and thus its automation is anticipated. A building
block of this information extraction process is to find the key
terms which carry the semantic information in each design
rule. Named entity recognition, a sub-task of information
extraction in the field of natural language processing, aims
towards finding these entities in unstructured text and assign-
ing them a label according to predefined classes. This paper
presents amethod based on a supervised deep learning trans-
former model, which is used to extract relevant terms from
a corpus of German regulatory documents. It requires few
training data, no user interaction and achieves weighted per-
formance scores of over 95% precision and 95% recall, given
that 12 unbalanced classes are specified. Additionally, it is
investigated how different tagging schemes and model vari-
ations affect the classifier’s performance. For future exten-
sions, the class labels are chosen such that they can be linked
to concepts already defined by Industry Foundation Classes.
As part of this study, a training data set is created consisting
of 2500 sentences from construction law documents, anno-
tated with named entity tags.

Keywords -
automatic compliance checking, building information
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nition, machine learning

1 Introduction
Building information modeling (BIM) offers great po-

tential for the automation of processes in the architec-
ture, engineering and construction (AEC) industry. One
of these processes is the checking of the building design
against rules and specifications from law documents, tech-
nical guidelines and individual contract requirements. For
example, the building designmust ensure accessibility and

meet appropriate fire safety measures, according to the re-
spective regulations.
Automatic compliance checking (ACC) requires a BIM
model to be checked on the one hand, and rule specifica-
tions in machine-readable format on the other. Regulatory
documents are however written in natural language, and
thus the rules must be transformed into logical, struc-
tured expressions to be processed automatically. Obtain-
ing such logical expressions from these unstructured text
documents is however a quite complex task. If carried out
manually by domain experts, it turns out to be error-prone
and time-consuming. Hence, the objective is to develop
automated systems that perform rule extractionwith amin-
imum of human interaction.
An important building block in this process is the extrac-
tion of relevant terms from the clauses found in legal docu-
ments pertaining to buildings, building parts, documents,
organizations, material types, and other engineering con-
cepts. These terms are called entities in the realmof named
entity recognition (NER), a sub-task of information extrac-
tion (IE) in the field of natural language processing (NLP).
Subsequent processes, such as the extraction of relations
between entities or finding semantic triplets rely on the
priorly detected named entities. [1]
Previous approaches of NER in the construction domain
include Li et al. [1], who used aBi-LSTMarchitecturewith
a self-attentionmechanism to detect entities as part of their
relation extraction procedure. Zhang and El-Gohary [2],
renowned researchers in ACC, proposed an unsupervised-
learning approach to link terms in the legal text to IFC
concepts based on semantic similarity. As a numerical
measure, they used the cosine similarity of the word em-
beddings. Recently, Moon et al. [3] used an architecture
consisting of a Bi-LSTM and an on-top conditional ran-
dom field (CRF) layer for NER in a variety of English reg-
ulatory documents, mainly standard specifications of US
states. For the proposed six distinct entity classes, their
method achieved performance scores of 91.9% precision
and 91.4% recall. A similar architecture was employed
by Song et al. [4], who report precision and recall scores
of 39% and 68%, respectively, for a dataset in Chinese
language. Zhong et al. [5] propose an end-to-end neu-
ral architecture to extract temporal constraints from Chi-
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nese building codes. One of their involved process steps
is to identify processes, objects and interval times by a
NER algorithm based on a Bi-LSTM + CRF architecture.
While many of the stated approaches achieve high perfor-
mance scores and allow for the integration into promising
algorithms, none of them has taken advantage of state-of-
the-art transformer model architectures. However, for the
purpose of classifying near-miss safety reports of the con-
struction industry, transformer models have already been
employed successfully by Fang et al. [6]. In this paper,
a method is presented to find entities in unstructured reg-
ulatory construction documents and classify them with
regard to selected Industry Foundation Classes (IFC) and
a handful of generic classes. To achieve this goal, a state-
of-the-art deep learning transformer model is trained with
an annotated training set consisting of German public con-
struction law texts.
The remaining part of the paper proceeds as follows: Sec-
tion 2 lays out some of the most important background
information about the tools used for this paper. Section 3
is concernedwith data processing and presents how the ex-
isting transformer model can be extended to suit the task at
hand. Section 4 addresses the experimental setup and in-
cludes detailed information about the learning algorithm.
The results of the conducted experiments are displayed in
Section 5. The findings are wrapped up in Section 6.

2 Background
2.1 Transformer models in NLP

Natural language is a form of sequential data and thus
its processing requires adequate handling of data series.
A frequently used tool in this regard are recurrent neural
networks (RNNs), which inherently have the ability to
process input data sequentially. With the advent of trans-
former models [7] in 2017, RNNs are being superseded
by this new model architecture in many applications.
Transformer models have the distinct advantage of being
efficiently parallelizable and thus they can make use of
GPUs, which reduces training times. This makes training
on huge amounts of data possible.
A prominent example of transformer models is BERT
(Bidirectional Encoder Representations from Transform-
ers) [8]. Roughly speaking, it adapts the encoder part of
the transformer architecture and stacks a total of twelve
encoders, each with a hidden dimension of � = 768 per
input token. This makes up to a huge model with roughly
1.1 × 108 weights. A high-level view of the architecture
is displayed in Figure 1. At first, the input sentence is
tokenized with respect to a fixed vocabulary tailored for
BERT which consists of about 30 000 word and word
piece [9] tokens. Words which are not in the vocabulary
can be represented as multi-token words with the help

of word piece tokens. Since the vocabulary includes
even single letters, every possible input word has a valid
tokenization. The input sentence is allowed to have a
maximum length of 512 tokens. Second, the tokens are
mapped to word embeddings, i.e. vectors u8 ∈ R� , which
represent the contextual meaning of each token. These
vectors u8 are then fed into the first of twelve encoders.
Each encoder consists of a multi-headed self-attention
mechanism and a feed forward layer (i.e. multi-layer
perception (MLP)). For a more detailed explanation of
the inner workings of BERT, incl. normalization layers,
positional encoding etc., the reader is referred to [7].

Figure 1. Simplified, high-level view of the BERT
architecture [7, 8]. The word tokens are embedded
and fed through twelve encoder blocks, each con-
sisting mainly of a self-attention layer and a feed
forward layer.

Since its release in 2019, BERT has gained great attention
in the NLP community. There are two main reasons why
BERT is chosen as a model for the conducted study:
First, it shows superiority in performance compared to
other model architectures in several NLP benchmark
problems. It is particularly inspiring for this study that it
outperforms the state-of-the-art NER models at the time
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of its release. [8] Second, a large dataset is not necessarily
needed in order to make use of BERT, since it is meant
to be a model for transfer learning: pre-trained BERT
models are already available for usage. They have been
trained, in an unsupervised manner, with fake tasks such
as next sentence prediction or masked language modeling.
Large, plain-text corpora like Wikipedia or text books
serve as a data source in this regard. These pre-trained
language models require few additional training data if
the task is only to fine-tune them with regard to a certain
domain-specific language.

2.2 Industry Foundation Classes

Industry Foundation Classes (IFC) are a semantic stan-
dard [10] issued by the buildingSMART organization to
aid in describing and exchanging building information in
the AEC domain. Its purpose is to provide an interface
for sharing data between different software tools. The IFC
schema includes definitions of many construction related
entities, as well as their properties and relations. These
entities can be of varying nature: some describe physical
parts of a building, e.g. IfcElements or IfcSpatialStruc-
tureElements, some describe more abstract things, e.g.
IfcProcess, or even persons (IfcActor). An excerpt of the
most general entities is shown in Figure 2.

3 Methodology
3.1 Data Preparation

In the conducted study, a text corpus is assembled
from the public construction law texts of four of the
16 federated states in Germany. The documents are
converted from PDF to plain text. Noise, such as page
numbers, navigation links, etc., are removed manually
where necessary. To subdivide the text according to sen-
tence boundaries, the spaCy [12] sentence segmentation
tool is used, which is based on sentence parsing. Since
structural text elements such as headings or incomplete
sentences do not carry any meaning, sentences with a
word count below 15, including punctuation and special
characters, are disregarded. All remaining clauses are full
sentences and can be properly processed by the BERT
model. The cleaned documents are annotated using the
web-based annotation software INCEpTION [13].

3.2 Classification Scheme

The most typical entities to be detected by NER meth-
ods are generally terms like dates, documents, geopolitical
entities (GPEs) and numerical values. For this study, in
addition, some domain-specific entity labels are defined

as entities in accordance with IFC classes. With the pur-
pose of providing a proof of concept, only some high-level
classes are selected, e.g. IfcActor, IfcBuilding, IfcBuildin-
gElement and IfcSite, since they occur most frequently in
the text. Table 1 lists all of the selected class labels and
gives a brief description of what is included in each class.

3.3 Preprocessing

Before a tokenized sentence is fed to the model, it
requires adjustment to meet the expected input format.
Unlike RNN-based models, BERT expects an input of
fixed size which consists of exactly 512 tokens. Therefore,
each sentence is tokenized with the specialized BERT
tokenizer and surrounded by the special tokens [CLS]
(indicates sentence beginning) and [SEP] (indicates
sentence ending). Sentences exceeding the maximum
input length of 512 tokens are truncated, shorter sentences
are padded with [PAD] tokens.
The experiments are carried out using three different tag-
ging schemes, two of which require further pre-processing
of the tokenized sentence. Simple, token-wise tagging
of entities does not require further pre-processing, but it
generally leads to a classifier with a vague understanding
of where multi-token words start and end. To combat this
impreciseness, the tagging scheme can be enriched by the
IOB (I = inside, O = other, B = beginning) or BILOU
(L = last, U = unit/single token) label-prefixes. [14]
They can be derived directly from the already tokenized
sentence by simple logic rules.

3.4 Model Architecture

The output matrix of BERT is of size ! × �, with se-
quence length ! and hidden dimension�, i.e. it consists of
one vector z8 ∈ R� for each input token)8 , with 0 ≤ 8 < !.
A dropout layer with a dropout probability of %� = 0.3
serves as a regularization measure, and is placed directly
after the BERT model [15]. Each vector is fed forward
through a single dense layer with output dimension #� ,
which is the number of distinct classes. Note that for each
position in the sentence, the weights of these dense layers
are equal and thus they do not count as separate param-
eters. Thus, it only introduces 9216 additional weights
to the model, if #� = 12, i.e. it hardly increases model
size. To predict the label for each token )8 , the argmax
function that follows the dense layer selects the label with
the highest score, per vector x8 ∈ R#� .
Since the corpus at hand consists solely of German text,
the GBERT model presented in [16] is used, which has
been pre-trained on various German corpora amounting
to more than 160GB of text data. The model architecture
itself is identical to the one proposed in the original BERT
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IfcRoot

IfcPropertyDefinitionIfcObjectDefinition IfcRelationship

IfcObject IfcTypeObject IfcFillsElement IfcVoidsElement

IfcProcess IfcActor IfcProduct

IfcSpatialStructureElement IfcProxy IfcElement

IfcSite IfcBuilding IfcBuildingStorey IfcSpace IfcBuildingElement IfcFeatureElement

IfcWindow IfcWall IfcBeam IfcColumn

Figure 2. Partial view of the highest hierarchy levels of the IFC data model [11]. The highlighted classes are
used for classification within this study.

Table 1. Performance scores of the model in the cross-validation experiment: model trained on all texts but one,
and tested on the unseen model.

Class label Key Description, examples
IfcActor ACT organization, companies, persons
IfcBuilding BUI building types, e.g. schools, offices, or building definitions
IfcBuildingElement BUE building elements, such as doors, walls or windows
IfcBuildingStorey STO building story specification
IfcDate DAT temporal dates like "12.4.2013"
IfcSite SIT site of construction, dismantling etc.
IfcTransportElement TRA elevators, escalators, etc.
Document DOC certificates, assessments, official notices, etc.
Geopolitical Entity GPE countries, states, city states, etc.
Law Text LAW names of referenced law texts
Law Reference REF specifications of section/paragraph/clause in law text, e.g. "§ 70 Abs. 3"
Numerical Value NUM numerical value, possibly with unit, e.g. "7.5 m"

paper [8]. To investigate the influence of sheer model
size, both GBERTBASE and GBERTLARGE are used as part
of the model architecture in separate experiments and the
test results are compared. This larger model’s architecture
is similar in concept, but more generous in terms of pa-
rameter count: it has 24 encoder blocks instead of 12, 16
attention heads per multi-headed attention block instead
of 12, and has a hidden dimension of 1024.

4 Experimental Setup
To evaluate the performance of the proposedmodel, two

experiments are conducted for this study:

1. 4-fold cross-validation: To train a model on as much
data as possible without compromising the amount
of available test data, the model is #�-fold cross-
validated, where #� is the number of documents.
The sentence samples of #� − 1 documents will be
split up to parts of 90% training data and 10% val-
idation data, while the sentences of the remaining
document serve as test data.

2. Training with little data: To demonstrate the

model’s performance in the case that only few sen-
tences are annotated, it is trained on only one input
text at a time and tested on all others. This emulates
the situation of domain experts, who cannot spend
many hours with the annotation of building design
rules, but instead only annotate a small portion of
the corpus. Each training document is split up in
the ratio of 9:1 to form training and validation sets,
respectively. The rest of the corpus serves as a test
set.

For both experiments, all three tagging schemes men-
tioned in Section 3.3 are tested and the results are
compared.

4.1 Error Measure

Assigning labels to tokens within a sequence of text
is a multi-class classification problem for each of the to-
kens. As a suitable loss function, the cross entropy loss
is selected. It is computed for each of the tokens )8 and
summed up over the whole sentence. The model’s out-
puts at those positions which have special tokens ([CLS],
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Figure 3. Schematic illustration of the named entity
recognition model architecture used in this study.
The argmax layer is used for predicting the most
likely label, while the vectors x8 ∈ R#� , 0 ≤ 8 < !
are used for loss computation.

[SEP] and [PAD]) as their input are not considered for
loss computation.
Since only a small portion of words in the dataset are
considered key terms, the number of unlabeled words is
much higher than the number of actual named entities to
detect. But even the classes themselves vary in size, which
could lead to a biased classifier that favors more frequent
class labels, especially the no-entity class. As addressed
in [17], this class imbalance is a common problem in NLP
and quite typical for NER tasks. As a remedy, a weighted
cross entropy loss function is selected, and the loss is av-
eraged with respect to each batch. For a given true class
label � and the vector of logits x ∈ R#� , as predicted by
the model, the loss is computed by

;�� (x, �) = F�

(
−G� + ln

(∑
9

4G 9

))
(1)

where w ∈ R#� is the vector of weight values assigned to
each class label�. Since this loss function incorporates the
negative log likelihood loss with the log softmax function,
it expects raw output values from the model. Therefore, as
shown in Figure 3, the model itself does not include any
activation function. [18]
To calculate the weights F� , the class label distribution
in the respective training set is determined. Knowing
the number of target labels occurrences per class C� , the
weights are computed by

F̂� =

√
1
C�

(2)

and normalized by

F� =
F̂�∑#�
�=0 F̂�

. (3)

This strategy introduces a higher penalty for the model
whenever it predicts false-positives in the majority classes
and a lower penalty for the model whenever it predicts
false-positives in the minority classes, making up for the
bias induced by the class-imbalance.

4.2 Learning schedule

In all training procedures of the described experiments,
a constant learning rate of ;A = 3 × 10−6 is chosen.
The batch sizes are 1train = 16, 1val = 16, 1test = 16 for
training, validation and testing, respectively.
The number of epochs has the upper limit of �max = 100,
however, to prevent overfitting, it advisable to follow an
early-stopping strategy. In this regard, a good compromise
between minimizing both the out-of-sample error and the
training time is to stop training after three consecutive
epochs with an increase in validation error. [19] The
model with the best validation error up to this point is then
selected as the trained model. This robust and efficient
mechanism is used in all experiments.

5 Results
To account for the class label imbalance, all precision

and recall values presented in this section, and conse-
quently all F1 scores, are weighted with regard to class
label occurrences. [20] Note that this can lead to an F1
score which is not between precision and recall.
Table 2 summarizes the results of experiment 1. An av-
eraged F1 score of 95.4% indicates the trained model’s
capability to be used for the task at hand. Even the low-
est performance, if trained on a corpus of roughly 1900
sentences, was recorded to be 95.0% precision and 94.4%
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Table 2. Performance scores of the model in the
cross-validation experiment: model trained on all
texts but one, and tested on the unseen text. Left
column: ISO codes for the states of Germany whose
building codes are included in the study.

Tested on Precision Recall F1 score Epochs
BE 0.958 0.953 0.955 18
BW 0.958 0.953 0.955 26
HB 0.950 0.944 0.946 36
HH 0.964 0.960 0.961 29
avg. 0.957 0.952 0.954 27

recall. Analogously, Table 3 shows the results of experi-
ment 2. In comparison to experiment 1, the performance
scores are, on average, slightly lower. This is plausible,
as per training/test run, the model was trained on only one
document instead of three. Nonetheless, even with such
little training data, the model achieved averaged perfor-
mance values of 93.5% precision and 92.6% recall.
In order to give a better insight into the incorrectly classi-
fied tokens, Table 5 displays the confusion matrix, created
by accumulation of the confusion matrices of all token-
wise labeling experiments listed in Table 2.
As it is of vital importance for the classifier to accurately
detect entity beginnings and endings, its performance is
examined for multiple tagging schemes. Table 4 shows
some performance indicators obtained by experiment. As
expected, the algorithmworks best for the easiest of the ad-
dressed NER problems, i.e. without any tagging scheme.
However, the results differ hardly if enhanced tagging
schemes are used, as the average F1 score is 94.3% when
using the IOB-scheme and also when using the BILOU-
scheme. A greater discrepancy is the number of needed
training epochs to achieve the stated performance scores:
while training without any scheme is stopped, on average,
after 27 epochs, it takes 31 epochs to train a model for
the IOB scheme and 64 epochs for the BILOU scheme.
In general, the learning curves are similar to the one dis-
played in Figure 5, which suggests that training for a few
epochs might suffice to achieve almost saturated perfor-
mance scores.
When using BERTLARGE, the achieved F1 score is, on av-
erage, 0.2 percentage points lower in comparison to the
results obtained with BERTBASE. This shows, at least in
this case andwith the specified hyperparameters, the larger
model is not worth the additional computational cost.
To give an idea of the produced output, an exemplary sen-
tence with the detected entity labels is shown in Figure 4.

6 Conclusions
In this paper, amodel architecture forNERmainly based

on the pre-trained GBERT model is presented. When

NUM BUE

BUE

Windows with a minimum parapet hight of

0.90 cm are permitted in outer walls.

Figure 4. Example of analyzed sentence incl. the
detected entity labels. Original sentence prior to
translation: "Fenster sind in diesen Außenwänden
ab einer Brüstungshöhe von 0,90 m zulässig".

Table 3. Performance scores and of themodel trained
on only one text and tested on all others.

Trained on Precision Recall F1 score Epochs
BE 0.919 0.910 0.913 34
BW 0.949 0.943 0.944 29
HB 0.938 0.927 0.930 41
HH 0.934 0.925 0.928 21
avg. 0.935 0.926 0.929 31

trained and tested on German public building code docu-
ments, average performance values of up to 95.7% preci-
sion and 95.2% recall are observed.
Themain aspects of the conducted study are the following:

1. To the authors’ knowledge, this is the first application
of a transformer-based deep learning model to Ger-
man text in the construction domain. The feasibility
of the concept is proven and further development
of processes based on the presented NER method is
made possible.

2. In the course of the study, a data set is created which
contains about 2500 sentences from German con-
struction law documents. The clauses have been
cleaned, processed for usage and have been manu-
ally annotated.

It is illustrated that the proposed model functions well,
even with small amounts of training data. This makes it
possible to use the model, with little annotation effort, as
a building block in other processes. Possible applications
could help with the automatic semantic enrichment of

Table 4. Average performance scores of the model
with regard to the used tagging scheme.

Tagging scheme Prec. Recall F1 score Epochs
Experiment 1:
token-wise 0.958 0.953 0.954 27
IOB 0.949 0.941 0.943 31
BILOU 0.950 0.941 0.943 64
Experiment 2:
token-wise 0.935 0.927 0.929 31
IOB 0.923 0.910 0.913 41
BILOU 0.932 0.923 0.924 85
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Table 5. Accumulated confusion matrix of all the processed test sets. The left column shows the true labels, the
upper row shows the predicted labels.

True \ Pred. DAT DOC GPE ACT BUI BUE SIT STO TRA LAW LAT NUM O
DAT 2275 1 0 0 1 1 1 1 0 10 11 7 13
DOC 1 2001 0 17 3 0 0 0 0 4 45 0 91
GPE 0 0 121 4 0 0 0 0 0 0 6 0 0
ACT 4 23 5 2927 29 3 4 2 0 2 1 0 86
BUI 4 1 0 23 3344 95 12 1 2 41 3 11 300
BUE 0 0 0 3 176 2612 4 18 3 0 2 4 307
SIT 0 3 0 0 2 2 317 0 0 0 0 0 10
STO 0 0 0 0 2 0 0 251 0 0 0 4 5
TRA 0 0 0 0 8 0 0 0 58 0 0 0 2
LAW 18 1 0 2 7 2 0 2 0 4076 39 1 41
LAT 18 8 14 3 1 0 0 0 0 13 1108 8 86
NUM 0 0 0 1 2 2 0 6 0 14 0 1444 20
O 36 619 25 566 962 875 158 81 27 76 212 58 47782

Figure 5. Exemplary training curves for cross-
validation experiment 1, with BILOU tagging
scheme. Left: performance scores obtained from
applying the model to the test set after each epoch.
The precision and recall curves are almost identical.
Right: learning curve, in- and out-of sample loss
progression.

BIM models or with automatic rule extraction from legal
documents in the construction domain.
A possible limitation of the method is that it might only
work well within the given corpus of law texts, which are
admittedly quite similar to each other. One could argue
that the technical and legal terms in the construction
codes are, by their nature, quite repetitive and that it
is no surprise they are detected, since then the model
basically acts as a string matcher. Therefore it remains to
be examined if the model would indeed outperform such
a rule-based approach.
Future works should include, first, a more fine-grained
categorization of entities to fit more and also more
specific entities in the IFC schema. This is necessary to
produce an exhaustive mapping from terms in law clauses
to IFC objects. Second, to extract information regarding
the relations between those objects, the dataset needs to
be extended by another layer of annotations and a second
model has to be introduced to detect these relations.
Third, a larger dataset should be created that contains all
of the 16 federated state building codes, and also other

types of legal documents to examine the generalization of
the trained model.
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